Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms.
نویسندگان
چکیده
Microbial biofilms are tightly packed, heterogeneous structures that serve as arenas for social interactions. Studies on Gram negative models reveal that during evolution in structured environments like biofilms, isogenic populations commonly diversify into phenotypically and genetically distinct variants. These variants can settle in alternative biofilm niches and develop new types of interactions that greatly influence population productivity. Here, we explore the evolutionary diversification of pellicle biofilms of the Gram positive, spore-forming bacterium Bacillus subtilis. We discovered that-similarly to other species-B. subtilis diversifies into distinct colony variants. These variants dramatically differ in biofilm formation abilities and expression of biofilm-related genes. In addition, using a quantitative approach, we reveal striking differences in surface complexity and hydrophobicity of the evolved colony types. Interestingly, one of the morphotypes completely lost the ability of independent biofilm formation and evolved to hitchhike with other morphotypes with improved biofilm forming abilities. Genome comparison suggests that major phenotypic transformations between the morphotypes can be triggered by subtle genetic differences. Our work demonstrates how positive complementarity effects and exploitative interactions intertwine during evolutionary diversification in biofilms.
منابع مشابه
Investigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms
Background: Biosurfactants are compounds that are produced by different microorganisms and have an emulsifying property. This study aimed to investigate extractive biosurfactant from bacillus subtilis (PTCC1720) against the biofilms of Staphylococcus aureus (PTCC 1112), Staphylococcus saprophyticus (PTCC 1440) and Staphylococcus epidermidis (PTCC 1435). Materials and Methods: This study was con...
متن کاملBacillus subtilis Protects Public Goods by Extending Kin Discrimination to Closely Related Species
Kin discrimination systems are found in numerous communal contexts like multicellularity and are theorized to prevent exploitation of cooperative behaviors. The kin discrimination system in Bacillus subtilis differs from most other such systems because it excludes nonkin cells rather than including kin cells. Because nonkin are the target of the system, B. subtilis can potentially distinguish d...
متن کاملPoly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis
Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysac...
متن کاملInterspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus.
Many different systems of bacterial interactions have been described. However, relatively few studies have explored how interactions between different microorganisms might influence bacterial development. To explore such interspecies interactions, we focused on Bacillus subtilis, which characteristically develops into matrix-producing cannibals before entering sporulation. We investigated wheth...
متن کاملGenome Sequences of Two Nondomesticated Bacillus subtilis Strains Able To Form Thick Biofilms on Submerged Surfaces
Genomes of two nondomesticated strains of Bacillus subtilis subspecies subtilis, NDmed and NDfood, have been sequenced. Both strains form very thick and spatially complex biofilms on submerged surfaces. Moreover, biofilms of the NDmed isolate were shown to be highly resistant to antimicrobials action.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 93 12 شماره
صفحات -
تاریخ انتشار 2017